高中数学说课稿

时间:2024-11-08 12:30:34
关于高中数学说课稿八篇

关于高中数学说课稿八篇

在教学工作者开展教学活动前,常常需要准备说课稿,借助说课稿可以提高教学质量,取得良好的教学效果。说课稿应该怎么写呢?下面是小编帮大家整理的高中数学说课稿8篇,希望能够帮助到大家。

高中数学说课稿 篇1

说教学目标

A、知识目标:

掌握等差数列前n项和公式的推导方法;掌握公式的运用。

B、能力目标:

(1)通过公式的探索、发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力。

(2)利用以退求进的思维策略,遵循从特殊到一般的认知规律,让学生在实践中通过观察、尝试、分析、类比的方法导出等差数列的求和公式,培养学生类比思维能力。

(3)通过对公式从不同角度、不同侧面的剖析,培养学生思维的灵活性,提高学生分析问题和解决问题的能力。

C、情感目标:(数学文化价值)

(1)公式的发现反映了普遍性寓于特殊性之中,从而使学生受到辩证唯物主义思想的熏陶。

(2)通过公式的运用,树立学生"大众教学"的思想意识。

(3)通过生动具体的现实问题,令人着迷的数学史,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感。

说教学重点:

等差数列前n项和的公式。

说教学难点:

等差数列前n项和的公式的灵活运用。

说教学方法:

启发、讨论、引导式。

教具:

现代教育多媒体技术。

教学过程

一、创设情景,导入新课。

师:上几节,我们已经掌握了等差数列的概念、通项公式及其有关性质,今天要进一步研究等差数列的前n项和公式。提起数列求和,我们自然会想到德国伟大的数学家高斯"神速求和"的故事,小高斯上小学四年级时,一次教师布置了一道数学习题:"把从1到100的自然数加起来,和是多少?"年仅10岁的小高斯略一思索就得到答案5050,这使教师非常吃惊,那么高斯是采用了什么方法来巧妙地计算出来的呢?如果大家也懂得那样巧妙计算,那你们就是二十世纪末的新高斯。(教师观察学生的表情反映,然后将此问题缩小十倍)。我们来看这样一道一例题。

例1,计算:1+2+3+4+5+6+7+8+9+10。

这道题除了累加计算以外,还有没有其他有趣的解法呢?小组讨论后,让学生自行发言解答。

生1:因为1+10=2+9=3+8=4+7=5+6,所以可凑成5个11,得到55。

生2:可设S=1+2+3+4+5+6+7+8+9+10,根据加法交换律,又可写成 S=10+9+8+7+6+5+4+3+2+1。

上面两式相加得2S=11+10+。。。。。。+11=10×11=110

10个

所以我们得到S=55,

即1+2+3+4+5+6+7+8+9+10=55

师:高斯神速计算出1到100所有自然数的各的方法,和上述两位同学的方法相类似。

理由是:1+100=2+99=3+98=。。。。。。=50+51=101,有50个101,所以1+2+3+。。。。。。+100=50×101=5050。请同学们想一下,上面的方法用到等差数列的哪一个性质呢?

生3:数列{an}是等差数列,若m+n=p+q,则am+an=ap+aq。

二、教授新课(尝试推导)

师:如果已知等差数列的首项a1,项数为n,第n项an,根据等差数列的性质,如何来导出它的前n项和Sn计算公式呢?根据上面的例子同学们自己完成推导,并请一位学生板演。

生4:Sn=a1+a2+。。。。。。an—1+an也可写成

Sn=an+an—1+。。。。。。a2+a1

两式相加得2Sn=(a1+an)+(a2+an—1)+。。。。。。(an+a1)

n个

=n(a1+an)

所以Sn=(I)

师:好!如果已知等差数列的首项为a1,公差为d,项数为n,则an=a1+(n—1)d代入公式(1)得

Sn=na1+ d(II)

上面(I)、(II)两个式子称为等差数列的前n项和公式。公式(I)是基本的,我们可以发现,它可与梯形面积公式(上底+下底)×高÷2相类比,这里的上底是等差数列的首项a1,下底是第n项an,高是项数n。引导学生总结:这些公式中出现了几个量?(a1,d,n,an,Sn),它们由哪几个关系联系?[an=a1+(n—1)d,Sn==na1+ d];这些量中有几个可自由变化?(三个)从而了解到:只要知道其中任意三个就可以求另外两个了。下面我们举例说明公式(I)和(II)的一些应用。

三、公式的应用(通过实例演练,形成技能)。

1、直接代公式(让学生迅速熟悉公式,即用基本量例2、计算:

(1)1+2+3+。。。。。。+n

(2)1+3+5+。。。。。。+(2n—1)

(3)2+4+6+。。。。。。+2n

(4)1—2+3—4+5—6+。。。。。。+(2n—1)—2n

请同学们先完成(1)—(3),并请一位同学回答。

生5:直接利用等差数列求和公式(I),得

(1)1+2+3+。。。。。。+n=

(2)1+3+5+。。。。。。+(2n—1)=

(3)2+4+6+。。。。。。+2n==n(n+1)

师:第(4)小题数列共有几项?是否为等差数列?能否直接运用Sn公式求解?若不能,那应如何解答?小组讨论后,让学生发言解答。

生6:(4)中的数列共有2n项,不是等差数列,但把正项和负项分开,可看成两个等差数列,所以

原式=[1+3+5+。。。。。。+(2n—1)]—(2+4+6+。。。。。。+2n)

=n2—n(n+1)=—n

生7:上题虽然不是等差数列,但有一个规律,两项结合都为—1,故可得另一解法:

原式=—1—1—。。。。。。—1=—n

n个

师:很好!在解题时我们应仔细观察,寻找规律,往往会寻找到好的方法。注意在运用Sn公式时,要看清等差数列的项数,否则会引起错解。

例3、(1)数列{an}是公差d=—2的等差数列,如果a1+a2+a3=12,a8+a9+a10=75,求a1,d,S10。

生8:(1)由a1+a2+a3=12得3a1+3d=12,即a1+d=4

又∵d=—2,∴a1=6

……此处隐藏13913个字……努力去提高学生素质。根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法。

1、引导发现比较法

因为有五个幂函数,所以可先通过学生动手画出函数的图象,观察它们的解析式和图象并从式的角度和形的角度发现异同,并进行比较,从而更深刻地领会幂函数概念以及五个幂函数的图象与性质。

2、借助信息技术辅助教学

由于多媒体信息技术能具有形象生动易吸引学生注意的特点,故此,可用多媒体制作引入情境,将学生引到这节课的学习中来。再利用《几何画板》画出五个幂函数的图象,为学生创设丰富的数形结合环境,帮助学生更深刻地理解幂函数概念以及在幂函数中指数的变化对函数图象形状和单调性的影响,并由此归纳幂函数的性质。

3、练习巩固讨论学习法

这样更能突出重点,解决难点,使学生既能够进行深入地独立思考又能与同学进行广泛的交流与合作,这样一来学生对这五个幂函数领会得会更加深刻,在这个过程中学生们分析问题和解决问题的能力得到进一步的提高,班级整体学习氛氛围也变得更加浓厚。

(二)学法

本节课主要是通过对幂函数模型的特征进行归纳,动手探索幂函数的图像,观察发现其有关性质,再改变观察角度发现奇偶函数的特征。重在动手操作、观察发现和归纳的过程。

由于幂函数在第一象限的特征是学生不容易发现的问题,因此在教学过程中引导学生将抽象问题具体化,借助多媒体进行动态演化,以形成较完整的知识结构。

四、教学过程分析

(一)教学过程设计

(1)创设情境,提出问题。 新课标指出:“应该让学生在具体生动的情境中学习数学”。在本节课的教学中,从我们熟悉的生活情境中提出问题,问题的设计改变了传统目的明确的设计方式,给学生最大的思考空间,充分体现学生主体地位。

问题1:下列问题中的函数各有什么共同特征?是否为指数函数?

由学生讨论,总结,即可得出:p=w,s=a2,v=a,a=s1/2,v=t—1

这时学生观察可能有些困难,老师提示可以用x表示自变量,用y表示函数值,上述函数式变成:

都是自变量的若干次幂的形式。都是形如

的函数。

揭示课题:今天这节课,我们就来研究:幂函数

(一)课堂主要内容

(1)幂函数的概念

①幂函数的定义。

一般地,函数

叫做幂函数,其中x 是自变量,a是常数。

②幂函数与指数函数之间的区别。

幂函数——底数是自变量,指数是常数;

指数函数——指数是自变量,底数是常数。

(2)几个常见幂函数的图象和性质

由同学们画出下列常见的幂函数的图象,并根据图象将发现的性质填入表格

根据上表的内容并结合图象,总结函数的共同性质。让学生交流,老师结合学生的回答组织学生总结出性质。

以上问题的设计意图:数形结合是一个重要的数学思想方法,它包含以数助形,和以形助数的思想。通过问题设计让学生着手实际,借助行的生动来阐明幂函数的性质。

教师讲评:幂函数的性质.

①所有的幂函数在(0,+∞)上都有定义,并且图像都过点(1,1).

②如果a>0,则幂函数的图像通过原点,并在区间〔0,+∞)上是增函数.

③如果a<0,则幂函数在(0,+∞)上是减函数,在第一象限内,当x从右边趋向于原点时,图像在y轴右方无限地趋近y轴;当x趋向于+∞时,图像在x轴上方无限地趋近x轴.

④当a为奇数时,幂函数为奇函数;当a为偶数时,幂函数为偶函数。

以问题设计为主,通过问题,让学生由已经学过的指数函数,对数函数,描点作图得到五个幂函数的图像,但是我们应该知道绘制幂函数的图像比绘制指数函数和对数函数的图像更为复杂,因为幂函数随着幂指数的轻微变化会出现较大的变化,因此,在描点作图之前,应引导学生对几个特殊的幂函数的性质先进行初步的探究,如分析函数的定义域,奇偶性等,在根据研究结果和描点作图画出图像,让学生观察所作图像特征,并由图象特征得到相应的函数性质,让学生充分体会系统的研究方法。同时学生对于归纳性质这一环节相对指数函数,对数函数的性质,学生会有更大的困难。因此,教学中只须对他们的图像与基本性质进行认识,而不必在一般幂函数上作过多的引申和介绍。在教学中,采用从具体到一般,再从一般到具体的安排。

通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对知识识的再次深化。

(3)当堂训练,巩固深化

例题和练习题的选取应结合学生认知探究,巩固本节课的重点知识,并能用知识加以运用。本节课选取主要选取了两道例题。

例1是课本上的例题:证明f(x)=x1/2在(0,+∞)上是增函数。这题先从“形”的角度判断函数的单调区间和单调性,再用到定义从“数”的角度对函数的单调性进行推理论证,培养学生的数形结合的数学思想和解决问题的专业素养。

例2是补充例题,主要培养学生根据体例构造出函数,并利用函数的性质来解决问题的能力,从而加深学生对幂函数及其性质的理解。注意:由于学生对幂函数还不是很熟悉,所以在讲评中要刻意体现出幂函数y=x1。3是增函数与y=x—5/4的图像的画法,即再一次让学生体会根据解析式来画图像解题这一基本思路

(4)小结归纳,回顾反思。 小结归纳不仅是对知识的简单回顾,还要发挥学生的主体地位,从知识、方法、经验等方面进行总结。我设计了三个问题:

(1)通过本节课的学习,你学到了哪些知识?

(2)通过本节课的学习,你最大的体验是什么?

(3)通过本节课的学习,你掌握了哪些技能?

(二)作业设计 作业分为必做题和选做题,必做题对本节课学生知识水平的反馈,选做题是对本节课内容的延伸与,注重知识的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成. 我设计了以下作业:

(1)必做题

(2)选做题

(三)板书设计

板书要基本体现整堂课的内容与方法,体现课堂进程,能简明扼要反映知识结构及其相互联系;能指导教师的教学进程、引导学生探索知识;通过使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。

五、评价分析

学生学习的结果评价当然重要,但是更重要的是学生学习的过程评价。我采用及时点评、延时点评与学生互评相结合,全面考查学生在知识、思想、能力等方面的发展情况,在质疑探究的过程中,评价学生是否有积极的情感态度和顽强的理性精神,在概念反思过程中评价学生的归纳猜想能力是否得到发展,通过巩固练习考查学生对幂函数是否有一个完整的集训,并进行及时的调整和补充。 以上就是我对本节课的理解和设计,敬请各位专家、评委批评指正。

谢谢!

《关于高中数学说课稿八篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式